Mark Scheme (Results)

November 2018
Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2018
Publications Code 1MA1_1H_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with an alternative response.

4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths)
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

11 Number in brackets after a calculation

Where there is a number in brackets after a calculation E.g. $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas E.g. " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets

Where a word is used in square brackets E.g. [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

Misread

If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity
B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

3	No (supported)	P1	for start to process, eg. $2100 \times \frac{40}{100}(=840)$ or $100-40(=60)$	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
		P1	for process to find the 7 salesmen's share of bonus, eg $2100-" 840 "(=1260)$ or $2100 \times \frac{" 60 "}{100}(=1260)$	
		P1	for process to find bonus amount each salesman gets $\text { eg "1260" } \div 7(=180)$ OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times 7(=1470)$	
		P1	for process to compare what a single salesman gets under each scheme, eg " 180 " $\times \frac{25}{100}(=45)$ and " $\frac{2100}{10} "-" 180 "(=30)$ or " 180 " $\times \frac{25}{100}(=45)$ and " 180 " + " 45 " $(=225)$ oe and $\frac{2100}{10}(=210)$ or (" $\left.\frac{2100}{10} "-" 180 "\right) \div " 180 " \times 100(=16.6 \ldots)$	
		A1	OR process to compare what all salesmen gets under each scheme, eg " 1260 " $\times \frac{25}{100}(=315)$ and " 1470 " - "1260" (= $\left.=210\right)$ or " 1260 " $\times \frac{25}{100}(=315)$ and " 1260 " + " 315 " ($=1575$) oe and " 1470 " or (" $1470 "-" 1260 ") \div$ " $1260 " \times 100(=16.6 \ldots)$ 'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or $16 .(6 \ldots)(\%$ and $25 \%)$	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/1H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{6}{*}{9} \& \multirow[t]{3}{*}{box plot drawn} \& B1 \& ends of whiskers at 0 and 42 with a box \& The box can be of any height. Accept ends that are marked (eg line, cross, dot) or defined by the end of the whiskers if clear. \\
\hline \& \& B1 \& median at 10 inside a box \& Has to be inside a box; whiskers not required \\
\hline \& \& B1 \& for ends of box at 4 and 20 \& An independent mark that can be awarded for just a box; do not need whiskers for this mark. \\
\hline \& Comparison \& C1 \& for a correct comparison of medians, eg. the median delay time on Mon was greater than the median delay time on Tues. or ft (a) \& Simply quoting values for median, range and IQR is insufficient, they must be compared \\
\hline \& \& C1 \& \begin{tabular}{l}
for a correct comparison of a measure of spread, eg. the interquartile range (range) of delay times on Mon was greater than the interquartile range (range) of delay times on Tues. or ft (a) \\
For the award of both marks at least one of the comparisons must be in context
\end{tabular} \& Comparisons can relate to the median, and then either the range or the IQR. \\
\hline \& statement \& C1 \& 'No' with statement explaining that there might not be any delays between 25 minutes and 30 minutes as in the upper \(25 \%\) (12 trains) the delays may all be between 17 and 25 or 30 and 33 \& \begin{tabular}{l}
The 'No' may be implied from their wording, and could be written next to the "?" \\
The statement must mention (or imply) values above the UQ of 17
\end{tabular} \\
\hline \& \[
\frac{1}{5(x-1)}
\] \& B1 \& \[
\text { for } \frac{1}{5(x-1)} \text { or } \frac{1}{5 x-5}
\] \& \\
\hline (b) \& \(2(5+y)(5-y)\) \& M1

A1 \& for partial factorisation, eg $2\left(25-y^{2}\right)$ oe or $(10+2 y)(5-y)$ oe or $(5+y)(10-2 y)$ oe or $-2\left(y^{2}-25\right)$ oe for $2(5+y)(5-y)$ or $-2(5+y)(y-5)$ \&

\hline
\end{tabular}

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
14 (a)	$\frac{8}{27}$	M1	for showing the 4th root of 16 as 2 and the 4 th root of 81 as 3 or $\frac{8}{n}(n \neq 27)$ or $\frac{n}{27}(n \neq 8)$ or an intention to find the 4th root and cube, eg. $\sqrt[4]{\left(\frac{16}{81}\right)^{3}}$ or $\left(\sqrt[4]{\frac{16}{81}}\right)^{3}$ oe	
		A1	cao	
(b)	0	M1	for writing $\frac{1}{9}=3^{-2}, 9 \sqrt{3}=3^{2.5}, \frac{1}{\sqrt{3}}=3^{-0.5}$ as powers of 3 , with at least 2 correct or for working out $\frac{1}{9} \times 9 \sqrt{3} \times \frac{1}{\sqrt{3}}=1$	
		A1	cao	
15	3:10		process to find ratio of lengths $\mathbf{A}: \mathbf{B}=\sqrt{4}: \sqrt{25}\left(=2: 5\right.$ or $\frac{2}{5}$ or 2,5$)$	Accept working in fractions for the award of process marks but the final answer must be in correct simplified ratio notation
		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{P} 1 \end{aligned}$	for process to find ratio of lengths $\mathbf{B}: \mathbf{C}=\sqrt[3]{27}: \sqrt[3]{64}\left(=3: 4\right.$ or $\frac{3}{4}$ or 3,4$)$ for process to write as one ratio eg. finding a common multiple of 3 and 5 or $6: 15: 20$ oe	
		A1		

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	Proof with $\frac{127}{495}$	M1 M1 C1	$0.25656 \ldots$ or $0.2+0.05656 \ldots$ or $(10 \times 0.2 \dot{5} \dot{6}=) 2$. $\dot{5} \dot{6}$ or $2.5656 \ldots$ or $(100 \times 0.2 \dot{5} \dot{6}=) 25 . \dot{6} \dot{5}$ or $25.6565 \ldots$ or $(1000 \times 0.2 \dot{5} \dot{6}=) 256.5 \dot{6} \dot{6}$ or $256.5656 \ldots$ for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer, eg. $256.5656 \ldots .-2.5656 \ldots$. or $25.6565 \ldots .-0.25656 \ldots$. or $256.5 \dot{6}$ - 2. $\dot{5} \dot{6}$ or $25 . \dot{6} \dot{5}-0.2 \dot{5} \dot{6}$ or for $\frac{254}{990}$ or $\frac{25.4}{99}$ full proof seen with $\frac{127}{495}$	
17	$(2,-9)$	P1 P1 P1 A1	substitutes $x=0, y=-5$ into $y=x^{2}+a x+b \quad(b=-5)$ or substitutes $x=5, y=0$ into $y=x^{2}+a x+b(0=25+5 a+b)$ or starts process to find other intercept, eg writes $y=(x-5)(x-k)$ for complete process to find two intercepts, eg. substitutes the second point into $y=x^{2}+a x+b$ and solves to find a $(=-4)$ and $b(=-5)$ or substitutes $x=0, y=-5$ into $y=(x-5)(x-k)$ and solves to find $k(=-1)$ (dep on P2) for factorising or completing the square of $x^{2}+"-4 " x+"-5 "$ and identifying the x-coordinate of the turning point or for a complete process to find the x-coordinate of the turning point, $\operatorname{eg}(5+"-1 ") / 2$ cao	x-coordinate of 2 with no or incorrect working gets NO marks

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
$18 \quad \text { (a) }$	sketch$y=\mathrm{g}(-x)$	B1 B1	for appropriate sketch which crosses the x axis at $(2,0)$ and $(4,0)$, minimum point at $(3,-1)$ and end points at $(1,3)$ and $(5,3)$ cao	Allow some tolerance on the points if the intention is clear.
(b)				
19 (a)	shown	C1	for first step, eg $2\left((x+1)^{2}-1\right)$ or $2\left(x^{2}+2 x+1-1\right)$ oe	It is insufficient to state $\operatorname{gf}(x)=2 x(x+2)$ without showing the first step, and the following sequence of algebraic steps leading to it. Could be shown in the form of a flowchart, which must show inverse operations.
		C1	for fully correct chain of reasoning	
	4.5	M1	process to find inverse of g , eg $g^{-1}(x)=\frac{1}{2} x+1$ or for $2(x-1)=7$	
		A1	for 4.5 oe	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	fully correct working leading to $16(1+\sqrt{2})$	C1	for expanding the numerator, eg $18+2 \sqrt{2} \sqrt{18}+2$ or $\sqrt{324}+\sqrt{36}+\sqrt{36}+\sqrt{4}(=32)$ or for simplifying $\sqrt{18}$, eg. $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{18}+\sqrt{2}=4 \sqrt{2}$	Expanded terms need not be simplified
		C1	(indep) for method to rationalise the denominator, eg. $\frac{\text { "numerator" }}{\sqrt{8}-2} \times \frac{\sqrt{8}+2}{\sqrt{8}+2}$	
		C1	for fully correct working leading to $16(1+\sqrt{2})$	Accept $a=16, b=1$
21	3:4	P1	starts process eg $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ oe	
		P1	for process to find $\overrightarrow{O M}=\mathbf{a}+\frac{1}{2} "(\mathbf{b}-\mathbf{a}) "$ oe $\quad\left(=\frac{1}{2}(\mathbf{a}+\mathbf{b})\right)$	
		P1	for process to find $\overrightarrow{A P}=-\mathbf{a}+\frac{3}{5}$ " $\left(\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)$ " oe or (indep) for $\overrightarrow{A N}=-\mathbf{a}+" k " \mathbf{b}$	
		P1	process to find " k " using $\overrightarrow{A N}=-\mathbf{a}+$ " k " \mathbf{b} as a multiple of $\overrightarrow{A P}$	
		A1	cao	
		P1 P1 P1 P1 A1	ALTERNATIVE for producing $O M$ to C such that $A C$ is parallel to $O B$ for process to show that $M C=O M$, using congruent triangles $A C M$ and $B O M$ for process to find $P C$ as a multiple of $O M / 5(=7 O M / 5)$ for process to find $O N$ as a multiple of $A C(O B)(=3 O B / 7)$ using similar triangles $A C P$ and $N O P$ cao	Formal geometric reasoning relating to congruent and similar triangles is not required

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
22	21	P1	for a relevant probability, eg $\mathrm{P}($ green $)=\frac{x}{2 x+3}$ or $\mathrm{P}($ blue $)=\frac{x+3}{2 x+3}$	the number of green and blue pens could be $x-3$ and x or equivalent probabilities must be in an algebraic form in a single variable
		P1	for a relevant product, eg. " $\frac{x}{2 x+3} " \times " \frac{x-1}{2 x+2}$ " or " $\frac{x+3}{2 x+3} " \times " \frac{x+2}{2 x+2}$ "	
			$\text { OR }\left(" \frac{x}{x+3} "\right)^{2}+\left(" \frac{x+3}{2 x+3} "\right)^{2}=\frac{27}{75}$	This is an exception using replacements. No further credit is available
		P1	forms an appropriate equation, $\text { eg. " } \frac{x}{2 x+3} \times \frac{x-1}{2 x+2} "+" \frac{x+3}{2 x+3} \times \frac{x+2}{2 x+2} "=\frac{27}{55}$	
		P1	(dep P3) process to reduce equation to $a x^{2}+b x+c=0$ eg. $x^{2}-25 x+84=0$	
		P1	process to solve quadratic equation eg. $(x-21)(x-4)=0$	
		A1	cao	

Modifications to the mark scheme for Modified Large Print (MLP) papers. Paper 1H.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm \mathbf{5 0}^{\mathbf{o}}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H		Modification	Mark scheme notes
Question			Standard mark scheme
7		Diagram enlarged. Shading has been changed to dotty shading. $D C$ labelled 20 cm.	Standard mark scheme
8	$(\mathrm{~b})$	Diagram enlarged. Angle moved outside of angle arc and angle arc made smaller. Wording changed to 'It shows a right-angled triangle $A B C$. $A B=4 \mathrm{~cm} \quad A C=x \mathrm{~cm} \quad$ Angle $A B C$ is a right angle Angle $B A C=60^{\circ}$.	

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
9		Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Horizontal axis marked in units of 5 from 0 to 50 . Vertical axis marked in units of 4 from 0 to 52 . Graph lines changed to go through the following points: $(5,12),(10,24),(20,36),(40,48)$ Graph line to finish at 48 . Wording changed from 'The longest delay was 42 minutes.' To 'The longest delay was 40 minutes.'	
9	(a)	Diagram enlarged. Wording 'below' removed. Horizontal axis label moved to the left of the axis and marked in units of 5 from 0 to 50 .	Standard mark scheme for the box plot drawing, but note that the box is drawn to the following points:
9	(b)	Horizontal axis label moved to the left of the axis and marked in units of 5 from 0 to 50. Wording 'below' removed. The box plot has been drawn as follows:	Standard mark scheme but note the comparisons could use the revised numbers quoted herein.
9	(c)	Question wording changed to 'The longest delay on Tuesday was 35 minutes. This means that there must be some delays of between 27 and 32 minutes.	Standard mark scheme but answers could use the revised numbers quoted herein.

PAPER: 1MA1_1H				
Question			Modification	Mark scheme notes
11		Frames removed from information.	Standard mark scheme	
12		Diagram enlarged. Angles moved outside of angle arcs and angle arcs made smaller. DAE line made slightly shorter.	Standard mark scheme	
13		Diagram enlarged. Letters deleted from inside the shapes but shapes labelled as 'triangle A' and 'triangle B'. Shading changed to dotty shading. Grid cut to (-5,5). Wording added 'It shows triangle A and triangle B on a grid.'	Standard mark scheme	
14	(b)	For Braille only: a changed to w, b changed to x and c changed to y	Standard mark scheme but note letter changes for braille.	
17		Diagram enlarged.	Standard mark scheme	
18	(a)	Diagram enlarged.	Standard mark scheme	
18	(b)	Diagram enlarged. Wording 'On the grid' removed. Wording 'It shows a grid' added.	Standard mark scheme	
21		Diagram enlarged.	Standard mark scheme	

Mark Scheme (Results)

November 2018
Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 2H

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1 (a)	Venn diagram	C4	fully correct Venn diagram	Adstir
		(C3	7 of the 8 regions correct or for a diagram with only one number incorrectly placed)	$(2,10,8) 6$
		(C2	5 or 6 of the 8 regions correct)	$4,12(18,22) 16,24$
		(C1	3 or 4 of the 8 regions correct)	
	$\frac{1}{12}$	M1	ft for identification of 1 or 12 eg from the diagram	Need not be written as a fraction or probability at this stage. eg could be a ratio 1:12
		A1	ft oe	Acceptable equivalents are (eg, could ft) any fraction equivalent to $\frac{1}{12}, 0.08(33 .$.\() or 8(.33 .)
).				

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	60	M1	use of parallel lines to find an angle eg $A B E=70$ or $E B G=75$ or $E B C=$ 110 or shows parts of x as 35 or 25	Parts of x should be identified on the diagram by the insertion of a dividing line through angle x (need not be identified or drawn parallel).
		M1	for a complete method to find angle x; could be in working or on the diagram	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
		A1	for $x=60$	
		C1	(dep on M1) for one reason linked to parallel lines and one other reason, supported by working taken from: alternate angles are equal, allied angles / co-interior angles add up to 180 , angles on a straight line add up to 180 , angles in a triangle add up to 180°	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit. There should be no incorrect reasons given.
4 (a)	Ben (supported)	P1	$\begin{aligned} & \text { shows how to work interest out for one year eg } 2000 \times 0.025(=50) \\ & \text { or } 1600 \times 0.035(=56) \text { or } 150 \text { or } 168 \\ & \text { or } 2000 \times 1.025(=2050) \text { or } 1600 \times 1.035(=1656) \end{aligned}$	Throughout accept figures ± 1 pence which do not need to be presented in money notation (to 2 dp) or with monetary symbols.
		P1	shows compound interest calculation for one account eg $2050 \rightarrow 51.25$ or $2101.25 \rightarrow 52.53$ or $1656 \rightarrow 57.96$ or $1713.96 \rightarrow 59.99$ $\text { eg } 2000 \times 1.025^{3}(=2153.78) \text { or } 1600 \times 1.035^{3}(=1773.95)$	Award mark for a correct process shown, for which these figures can be taken as implying the process.
		P1	shows complete compound interest calculation for both accounts eg $2000 \times 1.025^{3}(=2153.78)$ and $1600 \times 1.035^{3}(=1773.95)$ OR one interest stated correctly eg 153.78 or 173.95	As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process.
		C1	Ben (shares) supported by 153.78 and 173.95	Accept an answer of "shares".

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
4 (b)	conclusion	C1	conclusion (ft) eg no change, shares now 182.5... Acceptable examples no since shares/Ben now 182.5 Still Ben since $182.5>$ Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 ($3^{\text {rd }} \mathrm{yr}$) No; Ben already gets more interest, he would just get even more Not acceptable examples no shares now 182.5 Still Ben since less than Ali $182.5>153.78$ no; he needs 20.17 more	Conclusion needs to be supported. ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid.
5	No(supported)	P1	calculates area of trapezium eg $1 / 2 \times 7 \times(10+16)(=91)$ for division by coverage eg $\div 2$ or [area of trapezium] $\div 2(=45.5)$ or process to find coverage per tin eg $5 \times 2(=10)$ for process to find number of tins bought eg $160 \div 16.99=9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1		
		P1	for division to find the number of for using whole no. of tins to find tins eg $\div 5$ or "45.5" $\div 5(=9.1)$ or total litres eg $9 \times 5(=45)$ [area of trapezium $] \div " 10 "(=9.1)$	
		P1	(dep on at least P2) for a process (dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99 eg " $45 " \times 2(=90)$ to find the total coverage	
		C1	for 'No' supported by correct figures eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
6	7	P1 P1 A1	process to use gradient eg $y=3 x+\mathrm{c}$ or $\mathrm{c}=-6$ or $\frac{15-9}{d-5}$ or $(15-9) \div 3$ or $(6,12)$ (dep) full process to rearrange equation formed to isolate d eg rearrangement of $15=3 d-6$ or $3=\frac{15-9}{d-5}$ or for $5+\frac{15-9}{3}$ cao	Condone use of a letter other than d, for d Must show processes to get as far as $d=$ Award P2 for an answer of $(7,15)$
$7 \quad \text { (a) }$ (b)	$\begin{gathered} 8.623 \times 10^{-5} \\ 7.44 \times 10^{6} \end{gathered}$	B1 M1 A1	$\begin{aligned} & \text { cao } \\ & \text { for } \frac{3200+0.051}{0.00043} \text { or } \frac{3200.051}{0.00043} \\ & \text { or performs an operation eg shows } 163.2,7441860.5,118.6(\ldots) \\ & \text { or an answer or } 7.44(\ldots) \times 10^{n} \text { where } n \neq 6 \text { or } 7441979(\ldots) \\ & \text { or an answer of } 7.4 \times 10^{6} \\ & \text { for } 7.44(1979 \ldots) \times 10^{6} \end{aligned}$	$7441979.0689 \ldots$ If a correct answer is shown in working and then rounded incorrectly, award full marks. Answer need only be given correctly to 3 sig fig; if following digits are incorrect ignore them.
8	Rotation 90° anticlockwise centre $(-1,1)$	M1 A1 A1	stating rotation or for showing $\mathbf{R}[(1,1),(1,-3),(3,-3)]$ for rotation of 90° anticlockwise for centre $(-1,1)$ given as a coordinate.	Award for a triangle in the correct position without the label R as long as this is the only triangle in lower right quadrant. Accept rotation of 270° clockwise Can be given as a coordinate alone. Do not award A marks if there is evidence of other transformations in the description, or other ambiguity in the answer given.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
9	$7 \leq N<8$	M1	for identifying the key numbers 7 and 8	Ignore any inequality symbols used at this stage Accept 7.9 (recurring) for 8 as shown by 7.999 or $7.9 \ldots$ or recurring notation (or words)
		A1	cao	
10	35	P1	use of ratio 2:3 and tin quantities to find overall ratio of litres eg 4:3 or 4 tins : 3 tins or 20 litres (Y) \& 30 litres (B)	Could be multiples $4 \& 3$ (for an amount which is a multiple of 50 litres). " 248 " is the total cost for making 50 litres " 248 " $\div 5=49.6$ for 10 litre (1 tin) green paint made Profit on 10 litres is $66.96-49.60=17.36$ Profit on 50 litres is $304.8-248=86.8$ 334.8 comes from 5×66.96 and is the selling price for 50 litres green paint
		P1	calculates total cost of making paint eg $4 \times 26+3 \times 48$ (50 litres) or $104+144(=248)$	
		A1	calculates comparable cost eg 10 litres (1 tin) green paint made as 49.6 or differences (profit) for 1 tin as 17.36 or 5 tins as 86.8 or total comparable costs for 50 litres as 334.8 and 248 , for 25 litres as 167.4 and 124 or 1 litres as 33.48 and 24.8	
		P1	for percentage calculation eg $\frac{1736}{4960} \times 100, \frac{" 334.8 "-" 248 "}{" 248 "} \times 100$ cao	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
11	1335	M1	for one correct procedure eg $9 \times 15(=135)$ or $15 \times 8(=120)$ or $9 \times 15 \times 8(=1080)$	Ignore additional products. Only these three products must be identified. There is no need to indicate summing at this stage. There is no need to show the three products sum to 1335
		M1	for all three correct products eg " 135 ", " 120 ", " 1080 " or $9 \times 15,15 \times 8,9 \times 15 \times 8$ oe	
		C1	for showing the three correct products added eg 135+120+1080	
12 (a)		M1	factorises numerator of $4 x^{2}-9$ eg $(2 x-3)(2 x+3)$ oe	$\frac{2 x(2 x-3)(2 x+3)}{3 x(2 x+3)(x-3)}$
	$\frac{4 x-6}{3 x-9}$	M1	factorises denominator eg $x(x-3)$ or $3(2 x+3)$ or for $3 x\left(2 x^{2}-3 x-9\right)$	
		A1	cancels to give $\frac{4 x-6}{3 x-9}$	Accept $a=4, b=-6, c=3, d=-9$
	$\frac{-x+8}{x(x+1)(x-2)}$	M1	method to use a common denominator eg $x(x+1)(x-2)$ by multiplying terms	Method must involve finding equivalents for all three separate terms; may be done in several stages.
		M1	deduce numerator eg $3 x(x-2)+x(x+1)-4(x+1)(x-2)$	
		A1	oe	Equivalents must be algebraically equivalent and must have involved full simplification.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	84.9	P1	shows a process to find the radius or diameter eg $44=2 \times \pi \times r$ or $r=\frac{22}{\pi}$ or $d=\frac{44}{\pi}$ or $r=7.0028$ or $d=14.0056$..	Allow r in the range 7 to 7.1 and d in the range 14 to 14.1 Could be shown on the diagram.
		P1	(dep on P1) complete method to find the area eg $1 / 2 \times$ " d " $2 \times \operatorname{Sin} 60$ oe, $1 / 2 \times 14 \times$ Tan60 oe, $1 / 2 \times 14 \times \sqrt{14^{2}-7^{2}}$ oe	
		A1	for answer in the range 84.8 to 85	If the correct answer in the range is given in working and then rounded incorrectly award full marks.
14	curve	C1	sketch of graph which starts above x-axis for negative x, and makes an increasing exponential rise into positive x	Condone graph "touching" the x axis. Do not award from a graph for positive x only. Do not award if a point is given for crossing the x-axis. Accept the coordinates shown as a label of " 1 " written on the y axis at the intersection.
	$(0,1)$ labelled	C1	for showing a label of $(0,1)$ on the y axis	
15	6.5	B1	oe	Accept (eg) $6 \frac{1}{2}$ and $\sqrt{42.25}$

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	0.455	M1	for $0.65 \times(1-0.65)$ or $0.65 \times 0.35\left(=0.2275\right.$ or $\left.\frac{91}{400}\right)$ or 2×0.2275 oe	Could be shown on a tree diagram but must show an intention to multiply
		A1		Acceptable equivalents are 45.5% or $\frac{91}{200}$ oe
	42	M1	for a start of the process eg 78 $\div 0.65(=120)$ or $78 \times 0.35(=27.3)$	$\frac{78 \times 0.35}{0.65}, \frac{78}{0.65}-78$
		A1	cao	
17	4:1	P1	for associating algebraic expressions with the correct ratio eg $p-5: q-5(=5: 1)$ or $p+20: q+20(=5: 2)$	
		P1	for $\frac{p+20}{q+20}=\frac{5}{2}$ or $\frac{p-5}{q-5}=\frac{5}{1}$ oe or $p-5=5(q-5)$ or $2(p+20)=5(q+20)$ oe	Award for one of the two simultaneous equations eg $5 q-p=20,5 q-2 p=-60$ oe
		M1	for a complete method shown to find p or q	Award for a simultaneous equation method to eliminate one variable leading to either $p=80$ or $q=20$
		M1	for a complete method shown to find p and q or two values for p and q that are in the ratio $4: 1$ or an unsimplified ratio 4:1(eg 80:20) or an answer of 1:4	Award for a simultaneous equation method to eliminate both variables leading to either $p=80$ and $q=20$
		A1	cao	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	$\left(\frac{-16}{5}, \frac{48}{5}\right)$	P1 P1 P1 A1	for a method to find gradient of \mathbf{L}_{1} eg $\frac{6-2}{4-12} \quad(=-1 / 2)$ or states \mathbf{L}_{2} as $y=-3 x$ (dep on P1) for a method to find equation of \mathbf{L}_{1} eg subs into $y="-1 / 2 " x+c$ OR states \mathbf{L}_{1} as $y="-1 / 2 " x+8$ (dep on P2) complete method to equate both lines eg " $-1 / 2 " x+8=-3 x$ oe	Ignore sketches.
19	$\begin{gathered} 9<m<11 \\ -11<m<-9 \end{gathered}$	M1	for a correct method to begin rearranging to solve for m^{2} eg $88<m^{2}+7$ or $m^{2}+7<128$ or $81<m^{2}<121$	It is insufficient to just multiply all three elements by 4 ; some rearrangement must occur such as showing as two separate inequalities or isolating m^{2}
		M1	for a complete method to $m^{2}=81$ or $m^{2}=121$ or better	Accept an inequality used in place of " $=$ ". m^{2} must be isolated at this stage.
		M1	for a set of critical values: at least two out of $9,11,-9,-11$	Do not award if other values are also given eg 10
		M1	for selecting a correct inequality for one set of critical values eg $9<m$ and $m<-9$ or $m<11$ and $-11<m$ or $9<m$ and $m<11$ or a set of inequalities with some error eg $9 ? m ? 11$ and $-11 ? m ?-9$ where ? is an incorrect inequality symbol like $9<m \leq 11$ or $9 \geq m \geq 11$ or answer given as $\pm 9<m< \pm 11$	Could be shown as $9<m<11$ or $-11<m<-9$ or $-11<m<11$
		A1	$9<m<11$ and $-11<m<-9$ given as boundaries of m	Accept with an "and" or an "or" or neither

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	3.75	P1	works to find vol of frustum eg $1 / 3 \pi(3.6)^{2} \times 6.4-1 / 3 \pi(1.8)^{2} \times 3.2$ or 86.858.. $-10.857 \ldots(=24.192 \pi$ or $76.00 .$.	$781.7 \ldots$ by use of diameter does not get the mark [vol] is their volume which could be ft using the radius, using the diameter, or could be another value as long as it is stated as being the volume, or clearly intended from working.
		P1	works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3} \pi \times 3.6^{3}$ ($=31.104 \pi$ or $97.7 \ldots$...)	
		P1	mass of frustum as [vol] \times density eg " 76.00 " $\times 2.4$ (=182.4..) or mass of hemisphere as [vol] \times density eg "97.7...." $\times 4.8(=469.037 \ldots)$	
		P1	$\begin{aligned} & \text { mean density as total mass } \div \text { total volume } \\ & \operatorname{eg}(" 182.4 . . "+" 469.037 ") \div(" 76 \ldots . .+ \text { " } 97.7 . . ") \\ & \text { or " } 651.4 . . " \div \text { " } 173.7 \ldots . . . " \end{aligned}$	All figures must come from correct method shown.
		A1	answer in the range 3.7 to 3.8	
21	proof	C1	uses cyclic quad eg if $C A B=x$ then $C R O=180-x$ (Opposite angles of a cyclic quadrilateral add up to 180°.)	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.
		C1	establishes relationship outside a circle eg $O R B=x$ (Angles on a straight line add up to 180)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
		C1	uses properties of a circle eg $R O=O B$ (both radii) so $A B C=x$ (Base angles of an isosceles triangle are equal.)	
		C1	Complete proof and conclusion	Full reasons given without any redundant reasons and correct reasoning throughout.

Question 14: sketch of $y=2^{x}$

Modifications to the mark scheme for Modified Large Print (MLP) papers. Paper 2H.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 ㅇ
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_2H		Modification	Mark scheme notes
Question			Diagram enlarged. Wording added 'It shows a Venn diagram.' Circles labelled 'set A', 'set B' and 'set C'. Braille only - sticky labels provided.
1		Diagram enlarged. Crosses changed to solid dots. Axes labels moved to the left of the horizontal axis and above the vertical axis. Wording changed from 'Here is his answer.' to 'His answer is shown in the Diagram Book.'	Standard mark scheme
2		Diagram enlarged. Arrows moved further to the right and made bigger. Angles moved outside of the angle arcs and angle arcs made smaller. Wording added 'Angle CBG $=35^{\circ}$, Angle BED $=110^{\circ}$, Angle GEF $=25^{\circ}$, Angle BGE is marked $x . '$ Wording changed from 'Work out the size of angle $x . '$ to 'Work out the size of the angle marked x.	Standard mark scheme
3			Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
20		Diagrams enlarged, simplified and made 2D. 2 models provided, Model 1 and Model 2. Wording changed to 'There are two models, Model 1 and Model 2.' Diagrams labelled Diagram 1 and Diagram Wording changed from 'Here is a frustum of a cone' to 'Diagram 1 and Model 1 show a frustum of a cone'. Wording changed from 'The frustum is'. to 'Diagram 2 and Model 2 show the frustum'. Wording 'shown below' removed	Standard mark scheme
21		Diagram enlarged	Standard mark scheme

Mark Scheme (Results)

November 2018

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
3 (a)	2, -4, 2, 8	B2	all 4 values correct	
		(B1	for 2 or 3 correct values)	
	Graph	M1	(dep B1) for at least 5 points plotted correctly ft from part a	
		A1	for a fully correct curve drawn	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y=-4$
	-2.6 or 1.6	B1	for 1 correct value, ft a non linear graph	Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied if the graph may be joined by line segments

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
4 (a)	5	M1	"2" $\div 40 \times 100$	" 2 " comes from their reading of the height of the 20 to 24 column
		A1	cao	
	9.5 shown	M1	for frequencies of $11,8,13,6$ and 2 (allow one error) or for midpoints $2,7,12,17$ and 22	May be seen on chart
		M1	for finding at least 4 products $f x$ consistently within interval (including end points)	
		M1	$\begin{aligned} & \text { for } \Sigma " f x " \div(" 11 "+" 8 "+" 13 "+" 6 "+" 2 ") \\ & \text { or }(11 \times 2+8 \times 7+13 \times 12+6 \times 17+2 \times 22) \div 40 \\ & \text { or } \Sigma " f x "(=380) \text { and } 9.5 \times(" 11 "+" 8 "+" 13 "+" 6 "+" 2 ")(=380) \end{aligned}$	Evidence of two different calculations that should lead to 380 are required for this mark
		C1	for correct figures showing the answer or accurate figures to compare from correct working eg 380 from two calculations	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
6	17.3	P1	for full process to find either angle eg $(180-90) \div(2+3) \times 2(=36)$ or for 36 or 54 seen as an angle	May be seen on diagram Condone correct values if incorrectly placed.
		P1	for a correct equation using trigonometry eg $\cos [A]=14 \div A B$	This must be shown as an equation with all four elements (eg cos, $[A], 14, A B$) present. [A] could be 36 or any angle clearly and unambiguously identified as A. This also applies to $[B]$ with Sine.
		P1	(dep previous P mark) for rearranging their trigonometry equation to make $A B$ the subject $\operatorname{eg}(A B=) " 14 \div \cos 36 "$	
		A1	for an answer in the range 17.3 to 17.4	If an answer is shown in the range in working and then incorrectly rounded award full marks.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
7	Diagram drawn	$\begin{array}{\|l\|} \hline \mathrm{B} 2 \\ \text { (B1 } \end{array}$	for correct frequency polygon for points plotted at correct midpoints of intervals or joining points at correct heights consistently within intervals including plotting at end values or correct frequency polygon with one point incorrect or correct frequency polygon with first and last points joined directly)	Plotting at $(5,14),(15,18),(25,26),(35,12)$ Must use line segments for B2 Joining must be with line segments NB ignore any histogram drawn and any part of frequency polygon outside range of first and last points plotted
8	8	P1	process to start the problem eg $x y=45$ and $x z=15$ and $y z=27$ or $5 \times 9(=45)$ and $3 \times 9(=27)$ and $3 \times 5(=15)$ or 3,5 and 9 stated	Maybe seen on diagram [Volume] must come from multiplying together what they clearly indicate as the 3 dimensions of the cuboid. The three dimensions cannot be 45 , 27 and 15
		P1	for $3 \times 5 \times 9$ (=135) or 2 of " 9 " $\div 2.5(=3.6)$ or " 5 " $\div 2.5(=2)$ or " 3 " $\div 2.5(=1.2)$	
		P1	for $2.5^{3}(=15.625)$ or all of " 9 " $\div 2.5(=3.6)$ and " $5 " \div 2.5(=2)$ and " 3 " $\div 2.5(=1.2)$	
		P1	for a complete process to find the number of cubes possible eg [volume] \div " $15.625 "$ (=8.64) or " 3.6 " \times " 2 " \times " 1.2 " (=8.64)	
		A1		

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
9 (a)	$\begin{aligned} & 2 x^{3}+x^{2}-7 x \\ & -6 \end{aligned}$	M1	for a method to find the product of two linear expressions eg 3 correct terms out of 4 terms or 4 terms ignoring signs	Note that (eg) $-x-6$ in expansion of $(x-2)(2 x+3)$ is to be regarded as 3 correct terms. First product must be quadratic but need not be simplified or may be simplified incorrectly
		M1	for a complete method to obtain all terms, half of which are correct (ft their first product) eg $2 x^{3}-x^{2}-6 x+2 x^{2}-x-6$	
		A1	cao	
(b)	-5	M1	for beginning to combine indices eg $4+n$ or y^{-3+2}	
		A1	cao	
(c)	1.27 and -0.472	M1	for substitution into the formula	Condone one sign error in the substitution Accept -4^{2} or $(-4)^{2}$
		M1	for simplifying to the form $\frac{-b \pm \sqrt{N}}{k} \operatorname{eg} \frac{4 \pm \sqrt{76}}{10}$ or 1.27 to 1.28 or -0.48 to -0.47	
		A1	for 1.27 to 1.28 and -0.48 to -0.47	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
12	73.6	P1	for correct initial use of Pythagoras eg $5^{2}+5^{2}(=50)$ or a trigonometric ratio in the form $\frac{5 \div 2}{0.5 A C}=\sin 45 \mathrm{oe}$	do not accept $\sqrt{20} \div 2$
		P1	for finding the length of half of the diagonal eg $\sqrt{" 50 "} \div 2(=3.5 \ldots)$ or $0.5 A C=\frac{5 \div 2}{\sin 45}(=3.5 \ldots)$ oe	
		P1	for process to use tan eg $\tan T A C=(12 \div$ " $3.5 .$. ") $(=3.3 .)$. or complete alternative method arriving at an equation with the subject as $\sin T A C$ or $\cos T A C$	
		A1	for an answer in the range 73.58 to 74.1	
13	408	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $1.01 \times 400(=404)$ or 408.04 or 412.08 cao	412(.08) on the answer line M1A0 1.01×400 may be seen as part of a calculation
14	Evidence of solution	M1	for constructing an equation eg $y \alpha \frac{1}{x^{3}}$ or eg $y=\frac{k}{x^{3}}$ oe	
		M1	for substituting in the values a and 44 into $y=\frac{k}{x^{3}}$	
		C1	for a complete method to use the equation, the value of k and $x=2 a$ to show $y=5.5 \mathrm{eg}(2 a)^{3} y=44 a^{3}$ and $y=44 a^{3} \div 8 a^{3}=5.5$	Must show all steps clearly

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	proof	C1	for writing an expression for an odd number, eg $2 n+1$ or $2 n-1$ (assuming n is any integer) or states n is even and eg $(n+1)$ or $(n+3)$ as odd numbers	Expansion of $(2 n-1)^{2}-(2 n+1)^{2}$ oe is acceptable
		C1	for a correct expression of the form $(2 n+1)^{2}-(2 n-1)^{2}$ expanded eg $4 n^{2}+12 n+9-\left(4 n^{2}+4 n+1\right)$ or $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$ or $(2 n+1+2 n-1)(2 n+1-(2 n-1))$ or when n is even and eg $\left(n^{2}+6 n+9\right)-\left(n^{2}+2 n+1\right)(=4 n+8)$	
		C1	for a correct simplified expression as a multiple of 8 eg $8 n+8$ or $8 n$ or when n is even and eg $4 n+8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	
16	39.9	P1	for finding the length of the minor or major arc eg $\frac{220}{360} \pi \times 12(=23(.03834 .)$.	Allow appropriate rounding if calculation seen in parts
		P1	for substituting into the sine or cosine rule to find $O D$ eg $14 \div \sin 140=O D \div \sin 24$ or $\left(O D^{2}=\right) 6^{2}+14^{2}-2 \times 6 \times 14 \times \cos 24(=78.5 \ldots)$	Must involve $O D$ in the relationship but may be implied
		P1	for a complete process to find the length $O D$ eg $14 \div \sin 140 \times \sin 24(=8.8(58778 .)$.	
		P1	for a complete process to find the perimeter eg "23(.03834..)" + 14+"8.8(58778..)" - 6	May be seen in multiple calculations
		A1	for an answer in the range 39.8 to 40	If an answer in the range is seen in working and then incorrectly rounded award full marks.

Modifications to the mark scheme for Modified Large Print (MLP) papers. Paper 3H.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H		Modification	Mark scheme notes
Question			Wording added 'There are four spaces to fill.' Table turned to vertical format. Grid enlarged. Y axis changed to go up in units of 2 from -10 to10.
3		Diagram enlarged. Right axis labelled. Shading changed to dotty shading. Axes labels moved to the left of the horizontal axis and above the vertical axis.	Standard mark scheme
4		Diagram enlarged.	Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Frequency table changed to: $5,20,25,10$ and Frequency column widened. Question wording changed from 70 cars to 60 cars.
6		Diagram enlarged and model provided for all candidates. Wording added 'and on the model: $15 \mathrm{~cm}^{2}, 27 \mathrm{~cm}^{2}, 45 \mathrm{~cm}^{2}$	Standard mark scheme $(5,5),(15,20),(25,25),(35,10)$
7			

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
9	(a)	MLP only - x changed to y.	Standard mark scheme with x changed to y.
9	(b)	Wording added, 'when'.	Standard mark scheme
11		Diagram enlarged.	Standard mark scheme
12		Diagram enlarged and model provided for all candidates. A dot added at the centre of square $A B C D$, labelled M. A line added joining A to M and another line added joining M to T. An angle arc added at A. Question wording changed to 'The vertex T is 12 metres vertically above the midpoint M of $A C$,'	Standard mark scheme
16		Diagram enlarged. Shading changed to dotty shading. $A D$ labelled 14 cm . Question wording changed to 'The shape is made from the triangle $A O D$ and a sector of a circle, centre O and radius 6 cm .'	Standard mark scheme
17		Diagram enlarged. x axis marked in units of 25 (as shown). Table changed as shown below. Number of students changed from 570 to 575	Standard mark scheme but histogram drawn at 7.5, 3.75, 5, 2.5, 2.5 Allow some tolerance on heights within gaps if intention is clear. Median at (approx.) 65.75 so allow within range 60 to 70.

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
20		Diagram enlarged and grid changed as shown below. Wording added, 'It shows triangle A, triangle B and triangle C on a grid. A cut out triangle is available if you wish to use it.' A cut out shape provided for all versions. Question wording changed as follows: (a) Describe the TWO transformations that map triangle A onto triangle B, then triangle B onto Triangle C. (1 mark). Three answer lines added for part (a). One point on triangle A is invariant under the combined transformation from triangle A to triangle C. (b) Find the coordinates of this point. (1 mark)	Part (a): award 1 mark for a full description of both transformations: A to B: a rotation of 180° about $(-1,0)$ B to C: a translation of $\binom{-3}{2}$ Do not award the mark if there is any ambiguity or any reference to other forms of transformation. Part (b): award 1 mark for $(-2.5,1)$

